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Enumeration of RNA structures by Matrix Models
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We enumerate the number of RNA contact structures according to their genus, i.e. the topological
character of their pseudoknots. By using a recently proposed matrix model formulation for the RNA
folding problem, we obtain exact results for the simple case of an RNA molecule with an infinitely
flexible backbone, in which any arbitrary pair of bases is allowed. We analyze the distribution of
the genus of pseudoknots as a function of the total number of nucleotides along the phosphate-sugar
backbone.

The prediction of foldings of single-stranded nucleic
acids (like RNA molecules) is still a major open problem
of molecular biology [1]. Several methods are available
for the prediction and description of the folding process in
various conditions. Most of them are statistical models
(both at equilibrium and out-of equilibrium) that have
roots in combinatorial problems. Although these models
are much simpler than the energy based ones (and thus
cannot provide thermodynamical predictions), they often
provide exact analytical solutions that give important in-
sights on the phase-space structure and the entropy. For
those reasons the combinatorics of contact structures of
biopolymers has received great attention over the past
thirty years [2]. In the case of RNA-folding, a lot of
attention has been paid to the combinatorics of contact
structures that are planar (see e.g. [3] or [4] and references
therein), but very little is known about non-planar struc-
tures (i.e. structures with pseudoknots). In this Letter we
explore a very schematic model for RNA folding which
allows for the exact enumeration of all contact structures
with fixed genus. This model, which is based on a sim-
pler one that was proposed earlier in [5, 6, 7, 8], may be
relevant for studying the behaviour of non-planar contri-
butions. The partition function is that of a chain of L
nucleotides in three dimensions:

Z =

∫ L
∏

k=1

d3
rkf({r})ZL({r}) , (1)

where rk is the position vector in three dimensions of
the k-th base, and f({r}) is a function which takes into
account the geometry, the stiffness and the sterical con-
straints of the chain. The folding of the chain is caused
by the hydrogen bonds that the bases can form. Since
the hydrogen bonds saturate, a base can interact with
only one other base at a time. The contribution from
such interactions to the partition function is described
by ZL({r}):

ZL({r}) = 1+
∑

i<j

Vij(rij)+
∑

i<j<k<l

Vij(rij)Vkl(rkl)+. . . ,

where Vij(rij) = exp(−βεijvij(rij)) is the Boltzmann
factor associated with the energy εij of making a bond

between the ith and the jth base at distance rij . In
this expression, β = 1/T denotes the inverse tempera-
ture, and vij(rij) represents the (short range) space de-
pendent part of the interaction. To further simplify the
model, we will assume that the chain is infinitely flexible
and we will neglect all sterical constraints, so that any
pairing of bases is assumed to be feasible. Therefore, we
can neglect all spatial degrees of freedom and write

Z = ZL = 1 +
∑

i<j

Vij +
∑

i<j<k<l

VijVkl + . . . , (2)

where now Vij = exp(−βεij). As shown in [5], each term
in ZL can be represented graphically by a suitable arc
diagram. In such a representation the nucleotides are
dots on an oriented horizontal line (which represents the
RNA sugar backbone from the 5′ end to the 3′ end), and
each base pair is drawn as an arc - above that line - be-
tween the two interacting bases. In real RNA, not all
pairs of nucleotides can interact. For instance, two bases
which are too close to each other along the backbone (say
within a distance of 4 bases) cannot form a hydrogen
bond since the backbone is not flexible enough. More-
over, for an RNA molecule one also usually assumes that
only standard Watson-Crick pairs (A-U,C-G) and wob-
ble pairs (G-U) are possible. These constraints greatly
increase the difficulty of enumerating all possible struc-
tures that are allowed. Among the set of all possible
structures, one defines secondary structures of an RNA
molecule as all structures which are represented by planar
arc diagrams (no crossing of arcs). When the diagrams
are non planar, one says that the RNA molecule contains
one or more pseudoknots. Structures with pseudoknots
can be classified according to the topological character of
the corresponding arc diagram [8]. Such a classification
can be made more explicit directly in eq. (2), as explained
in [5]. The main idea of [5] is to consider the following
integral over matrices:

ZL(N) =
1

AL(N)

∫ L
∏

k=1

dϕk e−
N
2

∑

ij
(V −1)ij tr(ϕiϕj)

× 1

N
tr

L
∏

l=1

(1 + ϕl) . (3)
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Here ϕi, i = 1, . . . , L, are L independent N × N Hermi-
tian matrices (ϕ+

i = ϕi) and
∏L

l=1(1 + ϕl) is the ordered
matrix product (1 + ϕ1)(1 + ϕ2) · · · (1 + ϕL). The nor-
malization factor is:

AL(N) =

∫ L
∏

k=1

dϕke−
N
2

∑

ij(V
−1)ijtr(ϕiϕj) , (4)

and V is the L×L symmetric matrix with elements Vij .
The integral in eq. (3) can be evaluated by using the
Wick theorem. The result is a function of N which can
be written as an asymptotic series at large N :

ZL(N) = 1 +
∑

i<j

Vij +
∑

i<j<k<l

VijVkl

+
1

N2

∑

i<j<k<l

VikVjl + . . . . (5)

The relation with the expansion in eq. (2) is obvious. The
two series coincide for N = 1, whereas for N > 1 the se-
ries in eq. (5) contains topological information. All the
planar structures are given by the O(1) term of eq. (5)
and higher-order terms in 1/N2 correspond to RNA sec-
ondary structures with pseudoknots. The classification
of pseudoknots induced by this expansion is reviewed in
[8].

The most challenging problem in RNA-folding predic-
tion is to find the structure with the lowest free energy.
If one restricts the search to the set of secondary struc-
tures without pseudoknots, several fast algorithms are
available [9]. However, when one includes the possi-
bility of having pseudoknots, the problem is still open.
An even simpler fundamental problem, namely the exact
combinatorics of RNA structures with any pseudoknots,
is unsolved. Results about the combinatorics of RNA
secondary structures without pseudoknots or with very
special classes of pseudoknots are available (e.g. [3, 4]),
but the general case is still lacking. In this Letter we ad-
dress precisely the problem of enumerating all secondary
structures with pseudoknots.

In order to get exact results, we make a few additional
simplifications. We assume that any possible pairing be-
tween nucleotides is allowed (independently of the type
of nucleotides and from their distance along the chain)
and that all the pairings may occur with the same prob-
ability. In other words, we assume that the matrix Vij

has all entries equal v > 0, i.e.:

V =









v + a v · · · v
v v + a · · · v
· · · · · · · · · · · ·
v v · · · v + a









. (6)

The real number a has been added in order for V to be
definite positive. Of course this addition is purely formal
since ZL(N) does not depend on a, as one can easily see

from eq. (5). In fact no diagonal term Vii appears, as
there are no self interaction diagrams. Even though the
combinatorial problem in eq. (2) is now greatly simplified,
it still keeps a lot of its topological interest. In fact, by
means of the matrix integral in eq. (3) we can study the
distribution of RNA structures with pseudoknots as a
function of their topological character. Let us illustrate
this point by a simple example for L = 4. In this case all
possible contact structures are listed in Figure 1.
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FIG. 1: All possible arc diagrams with L = 4. Diagrams with
i arcs are associated to the power vi, and g is the genus.

There is a total of ten possible arc diagrams, nine of
which are planar and one which is not planar. The nine
planar diagrams contain one diagram without arcs, six
with one arc and two with two arcs. The same result can
be directly obtained by computing the matrix integral in
eq. (3). In fact, as we will show later in this Letter, the in-
tegral evaluates precisely to Z4(N) = 1+6v+2v2+v2/N2.
Thus the coefficients of the asymptotic series have a di-
rect topological interpretation, and that is the reason
why the asymptotic 1/N2 expansion is usually referred as
topological expansion [10]. Each term of the series gives
the number of diagrams with fixed topological character:
the first term represents planar diagrams, the second rep-
resents diagrams which can be drawn planarly on a sur-
face with one handle (the torus), the third are diagrams
that can be drawn planarly on a plane with two handles
and so on. If we evaluate the integral in eq. (3) for any
finite L and finite N , we will have an analytical control
over the topology and the combinatorics of eq. (2). In the
rest of the Letter, we will show explicitly how to compute
the integral in eq. (3).

First, we note that by using a series of Hubbard-
Stratanovich transformations, eq. (3) can be exactly sim-
plified to:

ZL(N) =
1

Ã(N)

∫

dσ e−
N
2v

trσ2 1

N
tr(1 + σ)L . (7)

We see that the original integration over the L matrices
ϕk in eq. (3) has been reduced to an integration over a
single N×N matrix σ. The similarity of eq. (7) and (3) is
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obvious, and will be demonstrated in a future publication
([11]). Note that the regulator a drops out as long is it
not zero. The normalization factor Ã(N) is:

Ã(N) =

∫

dσ e−
N
2v

trσ2

=
(πv

N

)
N2

2

2
N
2 . (8)

The Gaussian matrix integral in eq. (7) is straightfor-
ward. We introduce the spectral density of the matrix σ
at finite N :

ρN (λ) ≡ 1

Ã(N)

∫

dσ e−
N
2v

trσ2 1

N
tr δ(λ − σ) . (9)

By inserting the identity 1 =
∫ +∞

−∞
dλ ρN (λ) into eq. (7),

we obtain:

ZL(N) =

∫ +∞

−∞

dλ ρN (λ)(1 + λ)L . (10)

Thus the multi-dimensional integral of eq. (3) has been
reduced to a one-dimensional integral. At this point it is
convenient to study the exponential generating function
of ZL(N):

G(t, N) ≡
∞
∑

L=0

ZL(N)
tL

L!
=

∫ +∞

−∞

dλ ρN (λ)et(1+λ) . (11)

The explicit form of ρN (λ) is a well known and classic
result of Random Matrix Theory (see e.g. [12] or [13],
and we use it in the form given in [14]):

ρN(λ) =
e−

N
2v

λ2

√
2πvN

N−1
∑

k=0

(

N
k + 1

) H2k(λ
√

N
2v

)

2kk!
, (12)

where Hk(x) are the Hermite polynomials:

Hk(x) = (−1)kex2 dk

dxk
e−x2

. (13)

By inserting eq. (12) into eq. (11), one obtains:

G(t, N) =
1

N

N−1
∑

k=0

(

N
k + 1

)

(t2v)k

k!Nk
e

v t2

2N
+t , (14)

where we have used the formula:
∫ +∞

−∞

dx e−x2+xyHn(x) = yney2√
π . (15)

The sum in eq. (14) can be expressed as a generalized
Laguerre polynomial:

L
(1)
N (z) =

N
∑

k=0

(

N + 1
N − k

)

(−z)k

k!
. (16)

We finally obtain:

G(t, N) = e
v t2

2N
+t 1

N
L

(1)
N−1

(

−v t2

N

)

. (17)

From this exact result we can extract informations on
all the coefficients ZL(N). The series expansion in t of
G(t, N) gives the first few coefficients ZL(N):

L ZL(N)

1 1

2 1 + v

3 1 + 3v

4 1 + 6v + 2v2 + v2/N2

5 1 + 10v + 10v2 + 5v2/N2

6 1 + 15v + 30v2 + 5v3 + (15v2 + 10v3)/N2

7 1 + 21v + 70v2 + 35v3 + (35v2 + 70v3)/N2

8 1 + 28v + 140v2 + 140v3 + 14v4 + (70v2 + 280v3

+70v4)/N2 + 21v4/N4

The meaning of these values is straightforward: the
power of v is the number of arcs in the diagram, and
the power of 1/N2 is the genus of the diagram. For in-
stance when L = 7 there are 21 planar diagrams with one
arc, and 35 diagrams on the torus (i.e. genus one closed
oriented surface) with two arcs. The total number of di-
agrams for each fixed genus can be obtained by putting
v = 1 (for instance, the total number of diagrams on the
torus for L = 6 is 25). Analogously, the total number of
diagrams, irrespective of the genus, can be obtained by
putting N = 1 (for instance, the number of diagrams for
L = 4 with 2 arcs is 3).

The general 1/N2 topological expansion of ZL(N) with
v = 1 is:

ZL(N) =

∞
∑

L=0

aL,g

1

N2g
, (18)

where the coefficients aL,g give exactly the number of di-
agrams at fixed length L and fixed genus g. From formula
(17) and eq. (18) we recursively obtain all the coefficients
aL,g. Moreover, by normalizing each aL,g by the total
number of diagrams at fixed L, i.e. by N ≡ ZL(1), we
can obtain the distribution of the number of diagrams.
In Figure 2 we plot the distributions of diagrams as a
function of L and g. We note the interesting feature that
for any given L >> 1 most of the diagrams are not pla-
nar, and they have a genus close to a characteristic value
〈g〉L. Such a value increases with L: we find numerically
that it scales like 〈g〉L ∼ 0.23L, at large L. Also, for each
fixed L there is a maximum possible value for g, namely
g ≤ L/4. Conversely a structure can have a genus g only
if it has a length at least L ≥ 4g.

It is important to note that even though the number
of planar diagrams, aL,0, is exactly the number of sec-
ondary structures without pseudoknots, and the number
of diagrams on a torus, i.e. aL,1 counts structures with
one pseudoknot only, aL,g with g ≥ 2 counts structures
that contains either a single topologically complex pseu-
doknot, or several simple pseudoknots with small genus.
For that reason, the concept of irreducible pseudoknots

has been introduced in [5], and it would be of interest to
study their distribution. The present analysis will be ex-
tended to the case of irreducible pseudoknots in a future
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FIG. 2: On the left: the normalized number of diagrams aL,g/N at fixed g as a function of L. On the right, the same quantity
at fixed L as a function of g. In both cases we put v = 1.

publication, where we will also compute exact asymptotic
behaviours for long sequences ([11]).

In this Letter, we have shown how one can compute the
number of folded structures as a function of the length
and of the genus of the RNA. This model is of course very
schematic and oversimplified. It shows however that for
a random RNA, the average topological character scales
linearly with the length of the chain. As most wild RNA
have an almost planar structure (with a genus g ≤ 2), this
implies that their sequences have been greatly designed
by evolution in order to achieve this specificity.
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